
1785MHz-1880MHz, 180W, 28V High Power RF LDMOS FETs

Description

The ITCH18180B4 is a 180-watt, internally matched LDMOS FET, designed for multicarrier WCDMA/PCS/DCS/LTE base station and ISM applications with frequencies from 1785 to 1880 MHz. It Can be used in Class AB/B and Class C for all typical cellular base station modulation formats.

•Typical Performance of Doherty Demo (On Innogration fixture with device soldered): V_{DD} =28 Volts, I_{DQMAIN} =450 mA, V_{GPEAK} =0.8V, Pulse CW, Pulse Width=20 us, Duty cycle=10%

Freq	P _{-1dB}	P _{-3dB}	η _D @Ρ ₋₃	P _{avg} =45	dBm WCI	DMA Signal ⁽¹⁾
(MHz)	(dBm)	(dBm)	(%)	Gp (dB)	η _D (%)	ACPR _{5M} (dBc)
1785	51.0	52.6	58.7	14.6	44.2	-27.0
1795	51.3	52.7	59.8	14.7	44.2	-27.4
1805	51.1	52.6	59.8	14.8	44.4	-27.4

•Typical Performance of Doherty Demo (On Innogration fixture with device soldered):

 V_{DD} =28 Volts, I_{DQMAIN} =600 mA, V_{GPEAK} =0.9V, Pulse CW, Pulse Width=20 us, Duty cycle=10%.

Freq	P _{-1dB}	P _{-3dB}	η _D @P ₋₃	P _{avg} =45	dBm WCI	DMA Signal ⁽¹⁾
(MHz)	(dBm)	(dBm)	(%)	Gp (dB)	η _D (%)	ACPR _{5M} (dBc)
1805	51.2	53.2	57.4	15.6	42.0	-29.8
1842.5	51.4	53.3	57.7	15.5	41.6	-31.8
1880	51.0	52.9	57.5	15.3	41.7	-32.7

Note(1) WCDMA signal: 3GPP test model 1; 1 to 64 DPCH; Channel Bandwidth=3.84MHz,PAR =10.5 dB at 0.01 % probability on CCDF.

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Internally Matched for Ease of Use
- Excellent thermal stability, low HCI drift

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	70	Vdc
GateSource Voltage	V_{GS}	-10 to +10	Vdc
Operating Voltage	V _{DD}	+32	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	T₃	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit

Document Number: ITCH18180B4 Preliminary Datasheet V1.0

					•		
Thermal Resistance, Junction to Case	Rejc			0.38		°C/W	
$T_C=85^{\circ}C$, $T_J=200^{\circ}C$, DC test	Kejc	0.38					
Table 3. ESD Protection Characteristics							
Test Methodology				Class			
Human Body Model (per JESD22A114)				Class 2			
Table 4. Electrical Characteristics (TA = 25°C unless other	erwise noted)						
Characteristic	Syr	nbol	Min	Тур	Max	Unit	
DC Characteristics (per Section)							
Drain-Source Breakdown Voltage			65	70		V	
$(V_{GS}=0V; I_D=1mA)$	V	oss	00	70		V	
Zero Gate Voltage Drain Leakage Current					10		
$(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$	I I	I _{DSS}			10	μΑ	
GateSource Leakage Current					1		
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	le	SS			I	μΑ	
Gate Threshold Voltage	V _G	(th)		1.8		V	
$(V_{DS} = 28V, I_D = 600 \text{ uA})$	V _G	;(tn)		1.0		V	
Gate Quiescent Voltage	Vo		2.2	2.7	3.2	V	
$(V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, \text{ Measured in Functional Test})$	Vo	S(Q)	2.2	2.1	3.2	V	
Functional Tests (On Innogration doherty demo, 50 ohm sy	/stem) :V _{DD} = 28	3 Vdc, I	DQMAIN =600 m.	A, V _{GPEAK} =0.9\	/, f = 1880 MH	lz, Pulse CW	
Pulse Width=20 us, Duty cycle=10%.							
Power Gain @ 30W Output	C	ip		15.3		dB	
1 dB Compression Point	В	140		51.0		dBm	

Power Gain @ 30W Output	Gp	15.3	dB
1 dB Compression Point	P _{-1dB}	51.0	dBm
3dB Compression Point	P _{-3dB}	52.9	dBm
Drain Efficiency@P3dB	η _ο	57.5	%
Input Return Loss	IRL	-7	dB

Load Mismatch (On Innogration Test Fixture, 50 ohm system): $V_{DD} = 28 \text{ Vdc}, I_{DQ} = 800 \text{ mA}, f = 1880 \text{ MHz}$

VSWR 10:1 at 180W pulse CW Output Power	No Device Degradation
---	-----------------------

TYPICAL CHARACTERISTICS

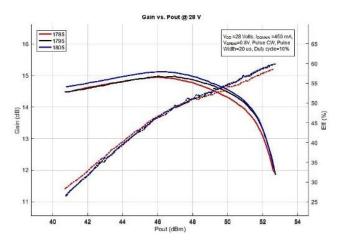


Figure 1. Power gain and drain efficiency as function of Pulse output power(Doherty Circuit 1785-1805MHz)

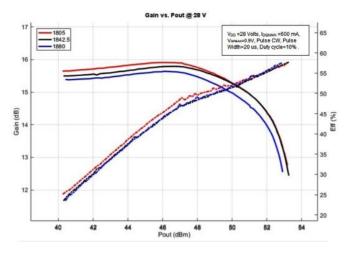


Figure 3. Power gain and drain efficiency as function of Pulse output power(Doherty Circuit 1805-1880MHz)

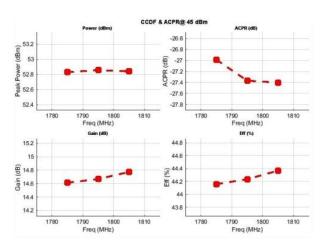


Figure 2. Single-Carrier WCDMA CCDF and ACPR_{5MHz} @ 30W as function frequency(Doherty Circuit 1785-1805MHz)

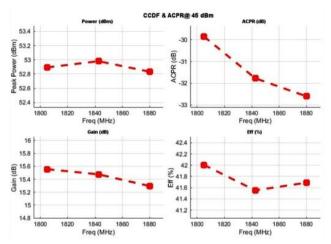
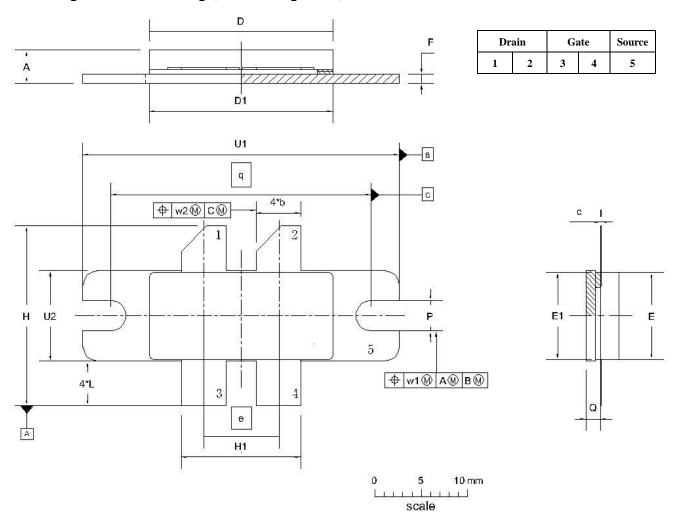
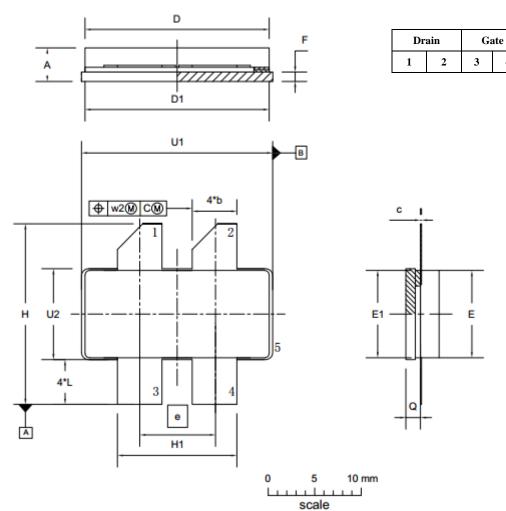



Figure 4. Single-Carrier WCDMA CCDF and ACPR_{5MHz} @ 30W as function frequency(Doherty Circuit 1805-1880MHz)

Package Outline

Eared Flanged Ceramic Package; 2 mounting holes; 4 leads

UNIT	A	b	С	D	D ₁	е	E	E ₁	F	Н	H1	L	р	Q	q	U ₁	U ₂	W ₁	W ₂
mm	4.72	4.67	0.15	20.02	19.96	7.00	9.50	9.53	1.14	19.94	12.98	5.33	3.38	1.70	27.04	34.16	9.91	0.05	0.51
mm	3.43	4.93	0.08	19.61	19.66	7.90	9.30	9.25	0.89	18.92	12.73	4.32	3.12	1.45	27.94	33.91	9.65	0.25 0	0.51
in about	0.186	0.194	0.006	0.788	0.786	0.044	0.374	0.375	0.045	0.785	0.511	0.210	0.133	0.067	4.400	1.345	0.390	0.04	0.00
inches	0.135	0.184	0.003	0.772	0.774	0.311	0.366	0.364	0.035	0.745	0.501	0.170	0.123	0.057	1.100	1.335	0.380	0.01	0.02


OUTLINE		REFERENCE	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	IOOOL DATE
PKG-B4E					03/12/2013

Source 5

Innogration (Suzhou) Co., Ltd.

Earless Flanged Ceramic Package; 4 leads

	UNIT	A	b	С	D	D ₁	е	E	E ₁	F	Н	H1	L	Q	U_1	U ₂	W ₁	W ₂
Ī	mm	4.72	4.67	0.15	20.02	19.96	7.00	9.50	9.53	1.14	19.94	12.98	5.33	1.70	20.70	9.91	0.05	0.54
	mm	3.43	4.93	0.08	19.61	19.66	7.90	9.30	9.25	0.89	18.92	12.73	4.32	1.45	20.45	9.65	0.25	0.51
		0.186	0.194	0.006	0.788	0.786	0.044	0.374	0.375	0.045	0.785	0.511	0.210	0.067	0.815	0.390	0.04	0.00
	inches	0.135	0.184	0.003	0.772	0.774	0.311	0.366	0.364	0.035	0.745	0.501	0.170	0.057	0.805	0.380	0.01	0.02

OUTLINE		REFERENCE	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	IOOOL DATE
PKG-B4					03/12/2013

Document Number: ITCH18180B4 Preliminary Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2017/09/07	Rev 1.0	Preliminary Datasheet

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.